The transformation from a disordered into an ordered version of the zeolite natrolite occurs on prolonged heating of this material in the crystallizing medium, but not if the mother liquor is replaced by water or an alkaline solution. This process occurs for both aluminosilicate and gallosilicate analogues of natrolite. In cross experiments, the disordered Al‐containing (or Ga‐containing) analogue is heated while in contact with the mother liquor of the opposite analogue, that is, the Ga‐containing (or Al‐containing) liquor. Therefore, strong evidence for the mechanism of the ordering process was obtained, which was thus proposed to proceed by intraframework migration of tetrahedral atoms without diffusion along the pores. Migration is first triggered, then fuelled by surface rearrangement through reactions with the mother liquor, and stops when an almost fully ordered state is attained. Classical dissolution–recrystallization and Ostwald ripening processes do not appear to be relevant for this phase transformation.