The transition‐metal dichalcogenide HfS2 is a promising alternative semiconductor with adequate band gap and high carrier mobility. However, a controllable growth of continuous HfS2 films with selectivity for specific surfaces at a low temperature on a large scale has not been demonstrated yet. Herein, HfS2 films are grown at 100 °C by atomic layer deposition (ALD) based on the precursors tetrakis(dimethylamido)hafnium and H2S. In situ vibrational spectroscopy allows for the definition of the temperature range over which (Me2N)4Hf chemisorbs as one monolayer. In that range, sequential exposures of the solid surface with (Me2N)4Hf and H2S result in self‐limiting reactions that yield alternating surface termination with dimethylamide and thiol. Repeating the cycle grows smooth, continuous, stoichiometric films of thicknesses adjustable from angstroms to >100 nm, as demonstrated by spectroscopic ellipsometry, XRR, AFM, UV–vis and Raman spectroscopy, XPS, and TEM. The well‐defined surface chemistry enables one to deposit HfS2 selectively using, for example, patterns generated in molecular self‐assembled monolayers. This novel ALD reaction combines several attractive features necessary for integrating HfS2 into devices.