Gas hydrates are solid crystalline structures in which water molecules trap small guest gas molecules and encage them through hydrogen bonding. Gas hydrates are known to be problematic in flow assurance applications as they can form plug inside the pipelines during oil and gas production, transportation and processing. In order to inhibit hydrate formation thermodynamically, various chemicals including some alcohols e.g. methanol (MeOH), mono- ethylene glycol (MEG) are used as thermodynamic hydrate inhibitors (THIs). In this paper, a simulation study is performed using PVTsim software wherein it predicts the hydrate formation for pure CO2 solution mixture and CO2 -MEG solution mixture systems using different equation of states. These equations of states include Soave-Redlich-Kwong (SRK), SRK-Peneloux, Peng- Robinson (PR) and Peng-Robinson Peneloux. The simulation results obtained using these equation of states were validated with the experimental data and PRPenelouxEoS was found to be in better agreement. The hydrate formation regions are determined in between the pressure range of 10 to 110 bara for natural gas mixture containing high percentage of CO2 in it. The inhibitors are used in 5, 10 and 20 wt% concentrations. The hydrate inhibition efficiency increased with the increase in concentration. Simulation results showed that methanol performed better in comparison to the other inhibitors at all concentrations.