Tetramethylpyrazine (TMP), a biologically active ingredient first extracted from the Chinese medicinal plant Ligusticum wallichii Franchat., has athero-protective activity, yet the particular mechanisms have not been completely explored. The present study was designed to investigate the effect of TMP and its possible mechanisms in RAW264.7 macrophages and apolipoprotein E-deficient (ApoE-/-) mice. TMP treatment markedly increased the cholesterol efflux and inhibited oxidized low-density lipoprotein (ox-LDL) uptake, thus, ameliorating lipid accumulation in macrophages. In addition, TMP significantly increased the protein and mRNA expression of ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), while suppressing the protein and mRNA expression of class A scavenger receptor (SR-A) and the cluster of differentiation 36 (CD36). Moreover, the effects of TMP on the upregulation of the expression of ABCA1 and ABCG1, the downregulation of the expression of CD36 and SR-A, the increase of cholesterol efflux and the decrease of lipid accumulation as well as the uptake of ox-LDL were mediated by the inactivation of PI3K/Akt and p38 MAPK. Furthermore, TMP upregulated the protein stability of ABCA1 without affecting ABCG1. Accordingly, TMP regulated the expression of SR-A, CD36, ABCA1 and ABCG1 in aortas of ApoE-/- mice, which resembled the findings observed in macrophages. TMP was also capable of delaying the progression of atherosclerosis in ApoE-/- mice. These findings revealed that TMP downregulates scavenger receptors and upregulates ATP-binding cassette transporters via PI3K/Akt and p38 MAPK signaling, thus suppressing lipid accumulation in macrophages.