A series of bioactive
molecules were synthesized from the condensation
of aspirin or chlorambucil with terminal alkynes bearing alcohol or
amine substituents. Insertion of the resulting alkynes into the iron–carbyne
bond of readily accessible diiron bis(cyclopentadienyl) μ-aminocarbyne
complexes, [
1a
,
b
]CF
3
SO
3
, afforded novel diiron complexes with a bridging vinyliminium ligand,
[
2
–
10
]CF
3
SO
3
, functionalized with a bioactive moiety. All compounds were characterized
by elemental analysis and IR and multinuclear NMR spectroscopy and
in three cases by single-crystal X-ray diffraction. Moreover, the
D
2
O solubility, stability in D
2
O and cell culture
media, and octanol–water partition coefficients of diiron complexes
were determined spectroscopically. The cytotoxicity of the complexes
was assessed in the tumorigenic A2780 and A2780cisR and the nontumorigenic
HEK 293T cell lines. Some complexes exhibit high potency and the ability
to overcome resistance in A2780cisR cells (aspirin complexes) or high
selectivity relative to HEK 293T cells (chlorambucil complexes). Further
studies indicate that the complexes significantly trigger intracellular
ROS production, irrespective of the nature of the bioactive fragment.
DNA alkylation and protein binding studies were also undertaken.