Introduction of heterocycles into the helical skeleton of helicenes allows modulation of their redox, chiroptical, and photophysical properties. This paper describes the straightforward preparation and structural characterization by single-crystal X-ray diffraction of thiadiazole-[7]helicene, which was resolved into M and P enantiomers by chiral HPLC, together with its S-shaped double [4]helicene isomer, as well as the smaller congeners thiadiazole-[5]helicene and benzothiadiazole-anthracene. A copper(II) complex with two thiadiazole-[5]helicene ligands was structurally characterized, and it shows the presence of both M and P isomers coordinated to the metal center. The emission properties of the heterohelicenes are highly dependent on the helical turn, as the [7]- and [5]helicene are poorly emissive, whereas their isomers, that is, the S-shaped double [4]helicene and thiadiazole-benzanthracene, are luminescent, with quantum efficiencies of 5.4 and 6.5 %, respectively. DFT calculations suggest quenching of the luminescence of enantiopure [7]helicenes through an intersystem-crossing mechanism arising from the relaxed excited S1 state.