2017
DOI: 10.1007/978-981-10-7302-1_45
|View full text |Cite
|
Sign up to set email alerts
|

Text Extraction for Historical Tibetan Document Images Based on Connected Component Analysis and Corner Point Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 11 publications
0
3
0
2
Order By: Relevance
“…For touching character segmentation, we present a new touching Tibetan character string database from historical Tibetan document images [8]. This paper is the extension of our previous works [6]- [8]. We propose a unified segmentation and recognition framework integrating layout segmentation, text-line segmentation, touching character string segmentation and recognition.…”
Section: Introductionmentioning
confidence: 95%
See 1 more Smart Citation
“…For touching character segmentation, we present a new touching Tibetan character string database from historical Tibetan document images [8]. This paper is the extension of our previous works [6]- [8]. We propose a unified segmentation and recognition framework integrating layout segmentation, text-line segmentation, touching character string segmentation and recognition.…”
Section: Introductionmentioning
confidence: 95%
“…Text-line segmentation methods based on baseline detection [4] and contour curve tracking [5] are used to segment the text regions into text-lines. In previous works, we propose the rule-based layout segmentation method [6] and text-line segmentation method based on baseline estimation [7]. For touching character segmentation, we present a new touching Tibetan character string database from historical Tibetan document images [8].…”
Section: Introductionmentioning
confidence: 99%
“…Beragam teknik pengolahan citra bisa digunakan, salah satunya adalah connected component analysis (CCA) untuk ekstraksi jumlah piksel dari objek citra dan density-based spatial clustering of applications with noise (DBSCAN) untuk klasterisasi ukuran objek dari hasil ekstraksi jumlah piksel. Metode CCA telah diterapkan untuk mengekstraks teks dari sebuah citra dokumen [9], klasterisasi citra laju alarm palsu konstan dari radar Doppler [10], klasifikasi telur ayam dan telur burung puyuh [11], dan aplikasi sistem tertanam [12], [13]. Metode DBSCAN telah diterapkan untuk segmentasi citra [14], ekstraksi objek citra radar FM-CW [15], klasterisasi radiasi matahari [16], pengelompokkan rumah kos mahasiswa [17], klasterisasi resiko tsunami [18], dan klasterisasi negara-negara dunia [19].…”
Section: Pendahuluanunclassified
“…Sebagai contoh, posisi badan udang yang membungkuk serta posisi kaki yang menjulur keluar menyebabkan luas objek udang menjadi bertambah sehingga ukuran udang yang terdeteksi oleh sistem juga menjadi lebih besar. Namun, rata-rata hasil akurasi sistem, yaitu 76,4 %, telah menunjukkan bahwa metode CCA dan DBSCAN dapat memberikan hasil yang baik dalam melakukan klasterisasi udang berdasarkan ukuran menggunakan teknik pengolahan citra digital seperti halnya [9]- [19].…”
Section: Hasil Dan Pembahasanunclassified
“…Accuracy level achieved in ancient script is lower by 5% than modern script, as it contains noise and is not available in digitized and tagged format. Therefore, an extensive study has to be performed on ancient script [43]. .…”
Section: Quantative Researchmentioning
confidence: 99%