2017
DOI: 10.1063/1.4979457
|View full text |Cite
|
Sign up to set email alerts
|

Text grouping in patent analysis using adaptive K-means clustering algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 3 publications
0
2
0
1
Order By: Relevance
“…In terms of cluster generation, k-means is still powerful. Shanie et al [32] used the k-means method to cluster patent documents related to green tea, in which the adaptive cluster number determination method is adopted based on silhouette score. Recently, ML methods for patent analysis have also begun to appear.…”
Section: Patent Miningmentioning
confidence: 99%
“…In terms of cluster generation, k-means is still powerful. Shanie et al [32] used the k-means method to cluster patent documents related to green tea, in which the adaptive cluster number determination method is adopted based on silhouette score. Recently, ML methods for patent analysis have also begun to appear.…”
Section: Patent Miningmentioning
confidence: 99%
“…Tari Gending Sriwijaya dibawakan oleh penari muda yang cantik dengan berpakaian pribumi aesan gede, selendang mantri, paksangko, dodot, dan tanggai (Shanie et al, 2017). Aksesoris busana yang digunakan oleh penari dalam tari Gending Sriwijaya merupakan warisan kebudayaan Palembang yang tercipta atas perpaduan budaya Melayu, Jawa, dan Cina yang memiliki simbol dan makna dari keramah-tamahan penduduk serta semangat kebesaran Kerajaan Sriwijaya yang dapat mewakili semangat kebangkitan Asia.…”
Section: Wisata Budayaunclassified
“…Compared with text mining, visualization approaches for patent analysis have progressed early. Take three major development of visualization approaches for example, ontology map focuses on domain-related knowledge discerption, K-means focuses on topic modeling [19], and technology function matrix focuses on tracking status [20].…”
Section: Literature Reviewmentioning
confidence: 99%