2021
DOI: 10.21203/rs.3.rs-206450/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Text-Independent Speaker Recognition Based on Adaptive Course Learning Loss and Deep Residual Network

Abstract: Text-independent speaker recognition is widely used in identity recognition. In order to improve the features recognition ability, a method of text-independent speaker recognition based on a deep residual network model was proposed in this paper. Firstly, the original audio was extracted with a 64-dimensional log filter bank signal features. Secondly, a deep residual network was used to extract log filter bank signal features. The deep residual network was composed of a residual network and a Convolutional Att… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?