SUMMARYThis paper discusses speaker verification (SV) using Gaussian mixture models (GMMs), where only utterances of enrolled speakers are required. Such an SV system can be realized using artificially generated cohorts instead of real cohorts from speaker databases. This paper presents a rational approach to set GMM parameters for artificial cohorts based on statistics of GMM parameters for real cohorts. Equal error rates for the proposed method are about 10% less than those for the previous method, where GMM parameters for artificial cohorts were set in an ad hoc manner.