2019
DOI: 10.48550/arxiv.1911.04705
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Text Mining using Nonnegative Matrix Factorization and Latent Semantic Analysis

Abstract: Text clustering is arguably one of the most important topics in modern data mining. Nevertheless, text data require tokenization which usually yields a very large and highly sparse term-document matrix, which is usually difficult to process using conventional machine learning algorithms. Methods such as Latent Semantic Analysis have helped mitigate this issue, but are nevertheless not completely stable in practice. As a result, we propose a new feature agglomeration method based on Nonnegative Matrix Factoriza… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?