Text Representation through Multimodal Variational Autoencoder for One-Class Learning
Marcos Paulo Silva Gôlo,
Ricardo Marcondes Marcacini
Abstract:Multi-class learning (MCL) methods perform Automatic Text Classification (ATC), which requires labeling for all classes. MCL fails when there is no well-defined class information and requires a great eff ort in labeling. One-Class Learning (OCL) can mitigate these limitations since the training only has instances from one class, reducing the labeling eff ort and making the ATC more appropriate for open-domain applications. However, OCL is more challenging due to the lack of counterexamples. Even so, most studi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.