2008
DOI: 10.1007/978-3-540-88636-5_12
|View full text |Cite
|
Sign up to set email alerts
|

Text Summarization by Sentence Extraction Using Unsupervised Learning

Abstract: Abstract. The main problem for generating an extractive automatic text summary is to detect the most relevant information in the source document. Although, some approaches claim being domain and language independent, they use high dependence knowledge like key-phrases or golden samples for machine-learning approaches. In this work, we propose a language-and domain-independent automatic text summarization approach by sentence extraction using an unsupervised learning algorithm. Our hypothesis is that an unsuper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
12
0
3

Year Published

2011
2011
2022
2022

Publication Types

Select...
4
2
2

Relationship

2
6

Authors

Journals

citations
Cited by 27 publications
(15 citation statements)
references
References 20 publications
0
12
0
3
Order By: Relevance
“…Baseline es una heurística que consiste en tomar las primeras n líneas u oraciones del texto para generar el resumen [14]. Baseline:aleatorio es una heurística cuyo funcionamiento consiste en tomar algunas oraciones del texto al azar [15]. Por lo que cualquier método que se comporte como Baseline:aleatorio no tendría razón de ser.…”
Section: Trabajo Relacionadounclassified
See 1 more Smart Citation
“…Baseline es una heurística que consiste en tomar las primeras n líneas u oraciones del texto para generar el resumen [14]. Baseline:aleatorio es una heurística cuyo funcionamiento consiste en tomar algunas oraciones del texto al azar [15]. Por lo que cualquier método que se comporte como Baseline:aleatorio no tendría razón de ser.…”
Section: Trabajo Relacionadounclassified
“…También se tienen las heurísticas Baseline [14] y Baseline:aleatorio [15] las cuales se utilizan para medir el avance que presentan los métodos del estado del arte. Sin embargo, poco se sabe de la calidad que tienen las herramientas comerciales en comparación con los métodos propuestos en el estado del arte de GREI.…”
Section: Introductionunclassified
“…A summary obtained by extraction is composed of a set of sentences selected from the source document(s) by using statistical or heuristic methods based on information entropy of sentences. The summarization process by extraction is a relevant alternative, robust and independent of language, compared with the summarization process by abstraction [2]. An abstractive summary is obtained by semantic analysis in order to interpret the source text, and find new concepts to generate a new text that will be the summary.…”
Section: Introductionmentioning
confidence: 99%
“…The main problem of this kind automatic summarization by extraction lies in identifying the most important information of the document sources [2]. Different methods have been used until now with more or less successful results according to measurements based on recall (the number of correct sentences selected on the total number of correct sentences) and precision (the number of correct sentences on the total number of selected sentences) [6].…”
Section: Introductionmentioning
confidence: 99%
“…TF-ISF is a more suitable weighting system for our system, since it ranks sentences instead of words. TFi,j is term frequency of i th index term in the j th sentence, and ISFi is inverse-sentence frequency of i th index term [98] [99]. Like the TF-IDF model, the corresponding weight for a sentence is computed as = .…”
Section: Information Assemblermentioning
confidence: 99%