For the better utilization of the enormous amount of data available to us on the Internet and in different archives, summarization is a valuable method. Manual summarization by experts is an almost impossible and time-consuming activity. People could not access, read, or use such a big pile of information for their needs. Therefore, summary generation is essential and beneficial in the current scenario. This paper presents an efficient qualitative analysis of the different algorithms used for text summarization. We implemented five different algorithms, namely, term frequency-inverse document frequency (TF-IDF), LexRank, TextRank, BertSum, and PEGASUS, for a summary generation. These algorithms are chosen based on various factors. After reviewing the state-of-the-art literature, it generates good summaries results. The performance of these algorithms is compared on two different datasets, i.e., Reddit-TIFU and MultiNews, and their results are measured using Recall-Oriented Understudy for Gisting Evaluation (ROUGE) measure to perform analysis to decide the best algorithm among these and generate the summary. After performing a qualitative analysis of the above algorithms, we observe that for both the datasets, i.e., Reddit-TIFU and MultiNews, PEGASUS had the best average F-score for abstractive text summarization and TextRank algorithms for extractive text summarization, with a better average F-score.