This research will provide statistical forecasting models for the relationship between the production process and biodegradable aliphatic-aromatic co-polyester fibre properties. Spin draw ratio, birefringence, drawability, die head pressure, crystallographic order as full-width half-maximum, count, tensile properties, diameter, and thermal shrinkage was tested, analyzed and modeled using factorial experimental designs. Appropriate statistical methods were applied, and a model for specifying the direction of increasing or decreasing of the significant process parameters was identified. A statistical forecasting program was typically designed for optimizing fibers extrusion processes using Microsoft Visual Basic program, and then the predicted and calculated results were evaluated. The main goal of current research is to give basics for the novel optimization approach, and how these novel modeling methodologies will help polymer designers in making the best experimental decision, saving the power, the time and the cost. The statistical models and designed programs are important for controlling the production process to enhance fibre properties. The produced fibres could be used for different textile applications, as an alternative to commercial chemical fibres at reasonable cost.