2022
DOI: 10.1002/mp.15607
|View full text |Cite
|
Sign up to set email alerts
|

Texture‐aware dual domain mapping model for low‐dose CT reconstruction

Abstract: Background Remarkable progress has been made for low‐dose computed tomography (CT) reconstruction tasks by applying deep learning techniques. However, establishing an intrinsic link between deep learning techniques and CT texture preservation is still one of the significant challenges for researchers to further improve the effect of low‐dose CT (LDCT) reconstruction. Purpose Most of the existing deep learning‐based LDCT reconstruction methods are derived from popular frameworks, and most models focus on the im… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
5
0

Year Published

2022
2022
2025
2025

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 32 publications
0
5
0
Order By: Relevance
“…The predominant DL models for CT denoising are GANs and CNNs. As shown in Figure 2a, out of 99 publications examined, 61 studies use the models based on CNN, 59–119 while 30 studies are based on GAN 120–149 . Additionally, two studies adopt Transformer‐based approaches 150,151 .…”
Section: Dl‐based Noise Reduction Methodsmentioning
confidence: 99%
See 4 more Smart Citations
“…The predominant DL models for CT denoising are GANs and CNNs. As shown in Figure 2a, out of 99 publications examined, 61 studies use the models based on CNN, 59–119 while 30 studies are based on GAN 120–149 . Additionally, two studies adopt Transformer‐based approaches 150,151 .…”
Section: Dl‐based Noise Reduction Methodsmentioning
confidence: 99%
“…The predominant DL models for CT denoising are GANs and CNNs. As shown in Figure 2a , out of 99 publications examined, 61 studies use the models based on CNN, 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 , 110 , 111 , …”
Section: Dl‐based Noise Reduction Methodsmentioning
confidence: 99%
See 3 more Smart Citations