High energy X-rays are well known due to there high penetration power particular in materials testing devices. For diffraction experiments high energy X-rays with more than 50 keV can be obtained at storage rings or using a tungsten X-ray tube. According to the high penetration power, these beamlines offer a very high photon flux and an excellent brilliance. That means measurements can be carried out fast. As an example, the complete texture measurement at one position of a steel shaft with 34 mm in diameter has taken 45 minutes nondestructively. On the other hand the high photon flux allows to measure foils or thin wires down to 50-100 µm. These new and fast options make it possible to measure in situ textures under tension, compression and at high temperatures. We have used 100 keV X-ray to measure the texture transition as well as the phase transition in a steel sample. The experiments were done at the high energy beamline BW5 (Hasylab at Desy/Hamburg). 100 keV X-rays have a wavelength of 0.1240 Å which means due to the Bragg's law very low scattering angles. Using a MAR345 image plate detector one obtains a set of complete Debye-Scherrer cones in a 2ș-range of 7° in about 1 sec. At room temperature we found 100% ferrite. During heating up till the austenite region we were able to investigate the thermal expansion and the texture relation between ferrite and austenite, which follows in our case the Kurdjumov-Sachs model. Furthermore, the program pack-__________________________________