2016
DOI: 10.11591/ijece.v6i6.pp3174-3187
|View full text |Cite
|
Sign up to set email alerts
|

Texture Fusion for Batik Motif Retrieval System

Abstract: <p>This paper systematically investigates the effect of image texture features on batik motif retrieval performance. The retrieval process uses a query motif image to find matching motif images in a database. In this study, feature fusion of various image texture features such as Gabor, Log-Gabor, Grey Level Co-Occurrence Matrices (GLCM), and Local Binary Pattern (LBP) features are attempted in motif image retrieval. With regards to performance evaluation, both individual features and fused feature sets … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
16
0
3

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
1

Relationship

2
5

Authors

Journals

citations
Cited by 14 publications
(19 citation statements)
references
References 12 publications
0
16
0
3
Order By: Relevance
“…Penelitian mengenai pengenalan wajah untuk mengidentifikasi seseorang berdasarkan pada citra inputan yang telah ada [16]. [9]. Adapun untuk penggunaan metode Viola-Jones dalam pendeteksian wajah disini pada blok citra masukkan yang masih mengandung komponen wajah dan bukan wajah dipisahkan [12], sehingga hanya ada komponen wajah yang dilewatkan pada blok ini.…”
Section: Pendahuluanunclassified
“…Penelitian mengenai pengenalan wajah untuk mengidentifikasi seseorang berdasarkan pada citra inputan yang telah ada [16]. [9]. Adapun untuk penggunaan metode Viola-Jones dalam pendeteksian wajah disini pada blok citra masukkan yang masih mengandung komponen wajah dan bukan wajah dipisahkan [12], sehingga hanya ada komponen wajah yang dilewatkan pada blok ini.…”
Section: Pendahuluanunclassified
“…From the experiments shows that PCA feature reduction can improve the retrieval precision while SFFS can reduce the execution time [13]. In 2017, Nurhaida et al developed Texture Fusion for Batik Motif Retrieval System, they systematically investigates the impact of image texture features on batik motif retrieval performance [14]. Based on the result of earlier work [7] and [13], this study was focused in batik motif recognition using texture fusion feature which is Gabor, Log-Gabor, and GLCM and using PCA feature reduction to improve the classification accuracy and reduce the computational time.…”
Section: Introductionmentioning
confidence: 99%
“…This knowledge needs to be introduced to the general public through an easily accessible application. Several studies on batik have been proposed, such as the Content Based Image Retrieval (CBIR) technique for retrieving batik images using Color Difference Histogram (CDH) [8], enhanced micro-structure descriptor [9], Multi Texton Co-Occurrence Descriptor [10], Multi Structure Co-occurrence Descriptor [11], improved completed robust local binary pattern [12], Texture Fusion [13]. However, all those studies are build for desktop.…”
Section: Introductionmentioning
confidence: 99%
“…Content Based Image Retrieval (CBIR) is one of active research nowdays, thus there are a lot of techniques proposed to seek the right method [14]- [17]. Techniques in CBIR, be it CDH and other techniques, such as texton co-occurrence matrix, multi-textons histogram, and micro-structure descriptor, depend on the feature extraction process [8]- [13]. Types of features can vary, such as color, texture, angle, and shape features.…”
Section: Introductionmentioning
confidence: 99%