Merkel cell carcinoma (MCC) is a highly aggressive, neuroendocrine skin cancer that is either associated with the clonal integration of the Merkel cell polyomavirus or with chronic sun exposure 1,2 . Immunotherapy is initially effective in many patients with metastatic MCC, but the response is rarely durable 3,4 . MCC lacks actionable mutations that could be utilized for targeted therapies, but epigenetic regulators, which govern cell fate, provide unexplored therapeutic entry points. Here, we performed a pharmacological screen in MCC cells, targeting epigenetic regulators. We discovered that the lysine-specific histone demethylase 1A (LSD1/KDM1A) is required for MCC growth in vitro and in vivo. HMG20B (BRAF35), a poorly characterized subunit of the LSD1-CoREST complex, is also essential for MCC proliferation. LSD1 inhibition in MCC disrupts the LSD1-CoREST complex, directly induces the expression of key regulators of the neuronal lineage and of members of the TGFβ pathway, and activates a gene expression signature corresponding to normal Merkel cells. Our results provide a rationale for evaluating LSD1 inhibitors, which are currently being tested in patients with leukemia and solid tumors, in MCC.