Background
Gastric cancer (GC) is a digestive system cancer with a high mortality rate globally. Previous experiences and studies have provided clinicians with ample evidence to diagnose and treat patients with reasonable therapeutic options. However, there remains a need for sensitive biomarkers that can provide clues for early diagnosis and prognosis assessment.
Results
We found 610 independent prognosis-related 5′-cytosine-phosphate-guanine-3′ (CpG) sites (P < 0.05) among 21,121 sites in the training samples. We divided the GC samples into seven clusters based on the selected 610 sites. Cluster 6 had relatively higher methylation levels and high survival rates than the other six clusters. A prognostic risk model was constructed using the significantly altered CpG sites in cluster 6 (P < 0.05). This model could distinguish high-risk GC patients from low-risk groups efficiently with the area under the receiver operating characteristic curve of 0.92. Risk assessment showed that the high-risk patients had poorer prognosis than the low-risk patients. The methylation levels of the selected sites in the established model decreased as the risk scores increased. This model had been validated in testing group and its effectiveness was confirmed. Corresponding genes of the independent prognosis-associated CpGs were identified, they were enriched in several pathways such as pathways in cancer and gastric cancer. Among all of the genes, the transcript level of transforming growth factor β2 (TGFβ2) was changed in different tumor stages, T categories, grades, and patients’ survival states, and up-regulated in patients with GC compared with the normal. It was included in the pathways as pathways in cancer, hepatocellular carcinoma or gastric cancer. The methylation site located on the promoter of TGFβ2 was cg11976166.
Conclusions
This is the first study to separate GC into different molecular subtypes based on the CpG sites using a large number of samples. We constructed an effective prognosis risk model that can identify high-risk GC patients. The key CpGs sites or their corresponding genes such as TGFβ2 identified in this research can provide new clues that will enable gastroenterologists to make diagnosis or personalized prognosis assessments and better understand this disease.