Marek's disease is a lymphoproliferative disease causing a serious threat in poultry production. Field strains of Marek's disease virus (MDVs) are continuously re-emerging, causing great economical losses to the poultry industry worldwide in spite of the intensive vaccination and restrictive management policy used. Histopathological and molecular characterizations of MDVs are essential for monitoring the changes of viruses and evaluating the effectiveness of existing vaccines. During 2016, 190 visceral tumour tissues representing 30 vaccinated chicken flocks from the Gifu prefecture, Japan, were analysed. A pathological examination revealed the presence of lymphoproliferative lesions in the visceral organs. Polymerase chain reaction screening of tissue specimens using specific primers for avian leucosis virus, reticuloendotheliosis virus, and MDV was positive only for MDV. The polymerase chain reaction products of meq, pp38, virus-induced IL-8 homology, and glycoprotein MDV genes were sequenced and used for homology, phylogenetic, and similarity level analysis with the published reference of MDVs in the database. The results revealed high similarity between the field isolates, vv and vv+ strains of MDV from the USA and China. Several point mutations in the nucleotide sequence of the field isolates and their deduced amino acid sequences were detected in those genes. The present molecular analyses indicated that nucleotide and amino acid changes could be valuable criteria for differentiation and determination of the pathogenicity and oncogenicity of MDVs according to the Avian Disease and Oncology Laboratory pathotyping in vivo studies. Furthermore, the results suggest that development of a new vaccine must be considered to overcome this devastating avian oncogenic viral disease.