2023
DOI: 10.17762/ijritcc.v11i10.8680
|View full text |Cite
|
Sign up to set email alerts
|

Thaat Classification Using Recurrent Neural Networks with Long Short-Term Memory and Support Vector Machine

Et al. Swati Shilaskar

Abstract: This research paper introduces a groundbreaking method for music classification, emphasizing thaats rather than the conventional raga-centric approach. A comprehensive range of audio features, including amplitude envelope, RMSE, STFT, spectral centroid, MFCC, spectral bandwidth, and zero-crossing rate, is meticulously used to capture thaats' distinct characteristics in Indian classical music. Importantly, the study predicts emotional responses linked with the identified thaats. The dataset encompasses a divers… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?