2022
DOI: 10.48550/arxiv.2205.11713
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Thalamus: a brain-inspired algorithm for biologically-plausible continual learning and disentangled representations

Abstract: Animals thrive in a constantly changing environment and leverage the temporal structure to learn well-factorized causal representations. In contrast, traditional neural networks suffer from forgetting in changing environments and many methods have been proposed to limit forgetting with different trade-offs. Inspired by the brain thalamocortical circuit, we introduce a simple algorithm that uses optimization at inference time to generate internal representations of temporal context and to infer current context … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?