Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective Ovarian tissue cryopreservation has become a promising alternative for fertility preservation in cancer patients, allowing ovarian tissue to be stored for future autotransplantation. Oxidative stress damage occurring during the cryopreservation process may impact tissue quality and function. This study aims to investigate the protective effects and potential mechanisms of Mitoquinone (MitoQ), a mitochondria-targeted derivative of the antioxidant ubiquinone, during the vitrification of ovarian tissue in mice. Methods KGN cells were treated with various concentrations (0.1, 1, 10, and 50 μM) of MitoQ to determine the optimal concentration. Female ICR mice were divided into three groups: control, conventional vitrification, and MitoQ-supplemented vitrification. Ovarian samples were cryopreserved, thawed, and assessed for tissue morphology using Hematoxylin and Eosin (H&E) staining, and mitochondrial changes using immunofluorescence, transmission electron microscopy, and Western blot analysis. RNA sequencing (RNA-seq) was employed to explore potential protective mechanisms. Autotransplantation experiments were conducted, and the long-term effects of MitoQ on ovarian function were evaluated by counting follicle numbers through H&E staining and measuring serum estradiol and AMH levels using ELISA. Results MitoQ at 1 μM was found to be the optimal concentration for maintaining follicular morphology after vitrification. It effectively reduced mitochondrial oxidative damage, preserved mitochondrial morphology, and regulated the expression of mitochondrial dynamics proteins (Drp1 and Mfn2). RNA-seq and Western blot analyses revealed that MitoQ inhibited the p38 MAPK pathway, thereby reducing apoptosis. Additionally, autotransplantation experiments showed that MitoQ treatment significantly increased follicle counts, estradiol (E2), and anti-Müllerian hormone (AMH) levels compared to conventional vitrification. Conclusions MitoQ effectively mitigates vitrification-induced oxidative damage, maintains mitochondrial homeostasis, and preserves both follicular reserve and endocrine function. These findings suggest that MitoQ is a valuable adjunct in ovarian tissue cryopreservation and could significantly improve fertility preservation outcomes for cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-024-02181-z.
Objective Ovarian tissue cryopreservation has become a promising alternative for fertility preservation in cancer patients, allowing ovarian tissue to be stored for future autotransplantation. Oxidative stress damage occurring during the cryopreservation process may impact tissue quality and function. This study aims to investigate the protective effects and potential mechanisms of Mitoquinone (MitoQ), a mitochondria-targeted derivative of the antioxidant ubiquinone, during the vitrification of ovarian tissue in mice. Methods KGN cells were treated with various concentrations (0.1, 1, 10, and 50 μM) of MitoQ to determine the optimal concentration. Female ICR mice were divided into three groups: control, conventional vitrification, and MitoQ-supplemented vitrification. Ovarian samples were cryopreserved, thawed, and assessed for tissue morphology using Hematoxylin and Eosin (H&E) staining, and mitochondrial changes using immunofluorescence, transmission electron microscopy, and Western blot analysis. RNA sequencing (RNA-seq) was employed to explore potential protective mechanisms. Autotransplantation experiments were conducted, and the long-term effects of MitoQ on ovarian function were evaluated by counting follicle numbers through H&E staining and measuring serum estradiol and AMH levels using ELISA. Results MitoQ at 1 μM was found to be the optimal concentration for maintaining follicular morphology after vitrification. It effectively reduced mitochondrial oxidative damage, preserved mitochondrial morphology, and regulated the expression of mitochondrial dynamics proteins (Drp1 and Mfn2). RNA-seq and Western blot analyses revealed that MitoQ inhibited the p38 MAPK pathway, thereby reducing apoptosis. Additionally, autotransplantation experiments showed that MitoQ treatment significantly increased follicle counts, estradiol (E2), and anti-Müllerian hormone (AMH) levels compared to conventional vitrification. Conclusions MitoQ effectively mitigates vitrification-induced oxidative damage, maintains mitochondrial homeostasis, and preserves both follicular reserve and endocrine function. These findings suggest that MitoQ is a valuable adjunct in ovarian tissue cryopreservation and could significantly improve fertility preservation outcomes for cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-024-02181-z.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.