This paper presents a numerical study of the effect of turbulence and elastic deformation on the performance of a journal bearing operating with couple stress fluids, following Constantinescu's turbulent lubrication theory. The modified Reynolds equation is derived taking into consideration the effect of turbulence and couple stresses. The modified Reynolds equation is solved using finite difference method. The results in terms of the load-carrying capacity, the attitude angle, friction coefficient and the side leakage are reported for various values of the couple stress parameter, the elastic coefficient, and Reynolds number. According to the obtained results, the couple stress fluid improves the performance characteristics of the rigid and deformed journal bearing in laminar and turbulent regimes. The results also show that bearing deformation and the turbulent regime cannot be neglected in calculating the performance characteristics of journal bearings lubricated with a Newtonian and a couple stress fluid.