2020
DOI: 10.37236/9313
|View full text |Cite
|
Sign up to set email alerts
|

The $1/k$-Eulerian Polynomials of Type $B$

Abstract: In this paper, we define the $1/k$-Eulerian polynomials of type $B$. Properties of these polynomials, including combinatorial interpretations, recurrence relations and $\gamma$-positivity are studied. In particular, we show that the $1/k$-Eulerian polynomials of type $B$ are $\gamma$-positive when $k>0$. Moreover, we define the $1/k$-derangement polynomials of type $B$, denoted $d_n^B(x;k)$. We show that the polynomials $d_n^B(x;k)$ are bi-$\gamma$-positive when $k\geq 1/2$. In particular, we get a symmetri… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?