Iron-sulfur clusters are emerging as reactive sites for the reduction of small-molecule substrates. However, the four-coordinate iron sites of typical iron-sulfur clusters rarely react with substrates, implicating three-coordinate iron. This idea is untested because fully sulfide-coordinated threecoordinate iron is unprecedented. Here we report a new type of [4Fe-3S] cluster featuring an iron center with three bonds to sulfides. Although a high-spin electronic configuration is characteristic of other iron-sulfur clusters, the planar geometry and short Fe-S bonds lead to a surprising lowspin electronic configuration at the three-coordinate Fe center as determined by spectroscopy and ab initio calculations. In a demonstration of biomimetic reactivity, the [4Fe-3S] cluster reduces hydrazine, a natural substrate of nitrogenase. The product is the first example of NH 2 bound to an iron-sulfur cluster. Our results demonstrate that three-coordinate iron supported by sulfide donors is a plausible precursor to reactivity in iron-sulfur clusters like the FeMoco of nitrogenase. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: