Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
IMPORTANCEUnderstanding the association of artificial intelligence (AI) with physician burnout is crucial for fostering a collaborative interactive environment between physicians and AI.OBJECTIVETo estimate the association between AI use in radiology and radiologist burnout.DESIGN, SETTING, AND PARTICIPANTSThis cross-sectional study conducted a questionnaire survey between May and October 2023, using the national quality control system of radiology in China. Participants included radiologists from 1143 hospitals. Radiologists reporting regular or consistent AI use were categorized as the AI group. Statistical analysis was performed from October 2023 to May 2024.EXPOSUREAI use in radiology practice.MAIN OUTCOMES AND MEASURESBurnout was defined by emotional exhaustion (EE) or depersonalization according to the Maslach Burnout Inventory. Workload was assessed based on working hours, number of image interpretations, hospital level, device type, and role in the workflow. AI acceptance was determined via latent class analysis considering AI-related knowledge, attitude, confidence, and intention. Propensity score–based mixed-effect generalized linear logistic regression was used to estimate the associations between AI use and burnout and its components. Interactions of AI use, workload, and AI acceptance were assessed on additive and multiplicative scales.RESULTSAmong 6726 radiologists included in this study, 2376 (35.3%) were female and 4350 (64.7%) were male; the median (IQR) age was 41 (34-48) years; 3017 were in the AI group (1134 [37.6%] female; median [IQR] age, 40 [33-47] years) and 3709 in the non-AI group (1242 [33.5%] female; median [IQR] age, 42 [34-49] years). The weighted prevalence of burnout was significantly higher in the AI group compared with the non-AI group (40.9% vs 38.6%; P < .001). After adjusting for covariates, AI use was significantly associated with increased odds of burnout (odds ratio [OR], 1.20; 95% CI, 1.10-1.30), primarily driven by its association with EE (OR, 1.21; 95% CI, 1.10-1.34). A dose-response association was observed between the frequency of AI use and burnout (P for trend < .001). The associations were more pronounced among radiologists with high workload and lower AI acceptance. A significant negative interaction was noted between high AI acceptance and AI use.CONCLUSIONS AND RELEVANCEIn this cross-sectional study of radiologist burnout, frequent AI use was associated with an increased risk of radiologist burnout, particularly among those with high workload or lower AI acceptance. Further longitudinal studies are needed to provide more evidence.
IMPORTANCEUnderstanding the association of artificial intelligence (AI) with physician burnout is crucial for fostering a collaborative interactive environment between physicians and AI.OBJECTIVETo estimate the association between AI use in radiology and radiologist burnout.DESIGN, SETTING, AND PARTICIPANTSThis cross-sectional study conducted a questionnaire survey between May and October 2023, using the national quality control system of radiology in China. Participants included radiologists from 1143 hospitals. Radiologists reporting regular or consistent AI use were categorized as the AI group. Statistical analysis was performed from October 2023 to May 2024.EXPOSUREAI use in radiology practice.MAIN OUTCOMES AND MEASURESBurnout was defined by emotional exhaustion (EE) or depersonalization according to the Maslach Burnout Inventory. Workload was assessed based on working hours, number of image interpretations, hospital level, device type, and role in the workflow. AI acceptance was determined via latent class analysis considering AI-related knowledge, attitude, confidence, and intention. Propensity score–based mixed-effect generalized linear logistic regression was used to estimate the associations between AI use and burnout and its components. Interactions of AI use, workload, and AI acceptance were assessed on additive and multiplicative scales.RESULTSAmong 6726 radiologists included in this study, 2376 (35.3%) were female and 4350 (64.7%) were male; the median (IQR) age was 41 (34-48) years; 3017 were in the AI group (1134 [37.6%] female; median [IQR] age, 40 [33-47] years) and 3709 in the non-AI group (1242 [33.5%] female; median [IQR] age, 42 [34-49] years). The weighted prevalence of burnout was significantly higher in the AI group compared with the non-AI group (40.9% vs 38.6%; P < .001). After adjusting for covariates, AI use was significantly associated with increased odds of burnout (odds ratio [OR], 1.20; 95% CI, 1.10-1.30), primarily driven by its association with EE (OR, 1.21; 95% CI, 1.10-1.34). A dose-response association was observed between the frequency of AI use and burnout (P for trend < .001). The associations were more pronounced among radiologists with high workload and lower AI acceptance. A significant negative interaction was noted between high AI acceptance and AI use.CONCLUSIONS AND RELEVANCEIn this cross-sectional study of radiologist burnout, frequent AI use was associated with an increased risk of radiologist burnout, particularly among those with high workload or lower AI acceptance. Further longitudinal studies are needed to provide more evidence.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.