The β-functions of marginal couplings are known to be closely related to the Afunction through Osborn's equation, derived using the local renormalization group. It is possible to derive strong constraints on the β-functions by parametrizing the terms in Osborn's equation as polynomials in the couplings, then eliminating unknowñ A and T IJ coefficients. In this paper we extend this program to completely general gauge theories with arbitrarily many Abelian and non-Abelian factors. We detail the computational strategy used to extract consistency conditions on β-functions, and discuss our automation of the procedure. Finally, we implement the procedure up to 4-, 3-, and 2-loops for the gauge, Yukawa and quartic couplings respectively, corresponding to the present forefront of general β-function computations. We find an extensive collection of highly non-trivial constraints, and argue that they constitute an useful supplement to traditional perturbative computations; as a corollary, we present the complete 3-loop gauge β-function of a general QFT in the MS scheme, including kinetic mixing. 1 cpoole@cp3.sdu.dk 2 aethomsen@cp3.sdu.dk arXiv:1906.04625v3 [hep-th]