Phagocytes, the first-line cells of the body's defence mechanisms against invading pathogens, kill microorganisms by means of lysosomal degradative enzymes and highly toxic reactive oxygen intermediates. The reactive oxygen compounds are produced, in a process called the 'respiratory burst', by the NADPH oxidase complex in plasma membranes, and by myeloperoxidase in phagolysosomes after degranulation. These processes generate electronically excited states which, on relaxation, emit photons, giving rise to phagocyte chemiluminescence (CL). This paper describes the conditions for the measurement of CL, and reviews the activity of phagocytes from individuals undergoing stress or disease. The capability of phagocytes to emit photons reflects remarkably well the pathophysiological state of the host. In many cases even the magnitude of the stress, the presence of a pathogen in the body, or the activity of the disease can be estimated. Physiological changes, e.g. in the reproductive cycle, can also be predicted.