Addiction is considered to be a neurobiological disorder of learning and memory because addiction is capable of producing lasting changes in the brain. Recovering addicts chronically struggle with making poor decisions that ultimately lead to relapse, suggesting a view of addiction also as a neurobiological disorder of decision-making information processing. How the brain makes decisions depends on how decision-making processes access information stored as memories in the brain. Advancements in circuit-dissection tools and recent theories in neuroeconomics suggest that neurally dissociable valuation processes access distinct memories differently, and thus are uniquely susceptible as the brain changes during addiction. If addiction is to be considered a neurobiological disorder of memory, and thus decision-making, the heterogeneity with which information is both stored and processed must be taken into account in addiction studies. Addiction etiology can vary widely from person to person. We propose that addiction is not a single disease, nor simply a disorder of learning and memory, but rather a collection of symptoms of heterogeneous neurobiological diseases of distinct circuit-computation-specific decision-making processes.