Most cosmic ray antiprotons observed near the Earth are secondaries produced in collisions of energetic cosmic ray (CR) particles with interstellar gas. The spectrum of secondary antiprotons is expected to peak at ∼ 2 GeV and decrease sharply at lower energies. This leaves a low energy window in which to look for signatures of exotic processes such as evaporation of primordial black holes or dark matter annihilation. In the inner heliosphere, however, modulation of CRs by the solar wind makes analysis difficult. Detecting these antiprotons outside the heliosphere on an interstellar probe removes most of the complications of modulation. We present a new calculation of the expected secondary antiproton flux (the background) as well as a preliminary design of a light-weight, low-power instrument for the interstellar probe to make such measurements.