According to the World Health Organization (WHO), endometriosis affects roughly 10% (190 million) of reproductive-age women and girls in the world (2023). The diagnostic challenge in endometriosis lies in the limited value of clinical tools, making it crucial to address diagnostic complexities in patients with suggestive symptoms and inconclusive clinical or imaging findings. Saliva micro ribonucleic acid (miRNA) signature, nanotechnologies, and artificial intelligence (AI) have opened up new perspectives on endometriosis diagnosis. The aim of this article is to review innovations at the intersection of new technology and AI when diagnosing endometriosis. Aberrant epigenetic regulation, such as DNA methylation in endometriotic cells (ECs), is associated with the pathogenesis and development of endometriosis. By leveraging nano-sized sensors, biomarkers specific to endometriosis can be detected with high sensitivity and specificity. A chemotherapeutic agent with an LDL-like nano-emulsion targets rapidly dividing cells in patients with endometriosis. The developed sensor demonstrated effective carbohydrate antigen 19-9 detection within the normal physiological range. Researchers have developed magnetic iron oxide nanoparticles composed of iron oxide. As novel methods continue to emerge at the forefront of endometriosis diagnostic research, it becomes imperative to explore the impact of nanotechnology and AI on the development of innovative diagnostic solutions.