It is well documented that neurological deficits after stroke can disrupt motor control processes that affect the smoothness of reaching movements. The smoothness of hand trajectories during multi-joint reaching depends on shoulder and elbow joint angular velocities and their successive derivatives as well as on the instantaneous arm configuration and its rate of change. Right-handed survivors of unilateral hemiparetic stroke and neurologically-intact control participants held the handle of a twojoint robot and made horizontal planar reaching movements. We decomposed endpoint jerk into components related to shoulder and elbow joint angular velocity, acceleration, and jerk. We observed an abnormal decomposition pattern in the most severely impaired stroke survivors consistent with deficits of inter-joint coordination. We then used numerical simulations of reaching movements to test whether the specific pattern of inter-joint coordination deficits observed experimentally could be explained by either a general increase in motor noise related to weakness or by an impaired ability to compensate for multi-joint interaction torque. Simulation results suggest that observed deficits in movement smoothness after stroke more likely reflect an impaired ability to compensate for multijoint interaction torques rather than the mere presence of elevated motor noise.