Frogs have been used as an alternative model to study pain mechanisms. Since we
did not find any reports on the effects of sciatic nerve transection (SNT) on
the ultrastructure and pattern of metabolic substances in frog dorsal root
ganglion (DRG) cells, in the present study, 18 adult male frogs (Rana
catesbeiana) were divided into three experimental groups: naive
(frogs not subjected to surgical manipulation), sham (frogs in which all
surgical procedures to expose the sciatic nerve were used except transection of
the nerve), and SNT (frogs in which the sciatic nerve was exposed and
transected). After 3 days, the bilateral DRG of the sciatic nerve was collected
and used for transmission electron microscopy. Immunohistochemistry was used to
detect reactivity for glucose transporter (Glut) types 1 and 3, tyrosine
hydroxylase, serotonin and c-Fos, as well as nicotinamide adenine dinucleotide
phosphate diaphorase (NADPH-diaphorase). SNT induced more mitochondria with
vacuolation in neurons, satellite glial cells (SGCs) with more cytoplasmic
extensions emerging from cell bodies, as well as more ribosomes, rough
endoplasmic reticulum, intermediate filaments and mitochondria. c-Fos
immunoreactivity was found in neuronal nuclei. More neurons and SGCs surrounded
by tyrosine hydroxylase-like immunoreactivity were found. No change occurred in
serotonin- and Glut1- and Glut3-like immunoreactivity. NADPH-diaphorase occurred
in more neurons and SGCs. No sign of SGC proliferation was observed. Since the
changes of frog DRG in response to nerve injury are similar to those of mammals,
frogs should be a valid experimental model for the study of the effects of SNT,
a condition that still has many unanswered questions.