The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 M on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violaceinproducing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.The amphibian fungal pathogen Batrachochytrium dendrobatidis causes a lethal skin disease that has caused substantial declines in amphibian populations (18). However, some species, such as the bullfrog (Rana catesbeiana) and the tiger salamander (Ambystoma tigrinum), are relatively asymptomatic when they are infected with this pathogen (4, 5). Variation in survival among species has been attributed to differences in innate immune factors, such as antimicrobial peptides (20) and skin-associated microbial species (8-11), as well as behavior (16). The presence of antifungal microbes is of particular interest because it suggests that these organisms are mutualistic associates of amphibian species. In addition, augmentation of the cutaneous microbial community by adding species of bacteria that inhibit B. dendrobatidis has the potential to provide resistance to chytridiomycosis (9).We have identified a number of bacteria associated with the skin of amphibians that inhibit B. dendrobatidis in vitro via secretion of antifungal metabolites (2,3,10,11). The bacterial species used in this study, Janthinobacterium lividum, produces the anti-B. dendrobatidis metabolites violacein and indole-3-carboxaldehyde (MIC, 1.82 M and 69 M, respectively) (3). We have shown that violacein inhibits B. dendrobatidis in laboratory assays (3) and is strongly correlated with survival in vivo of the frog species Ra...