Abstract. We establish quantitative homogenization, large-scale regularity and Liouville results for the random conductance model on a supercritical (Bernoulli bond) percolation cluster. The results are also new in the case that the conductivity is constant on the cluster. The argument passes through a series of renormalization steps: first, we use standard percolation results to find a large scale above which the geometry of the percolation cluster behaves (in a sense made precise) like that of Euclidean space. Then, following the work of Barlow [8], we find a succession of larger scales on which certain functional and elliptic estimates hold. This gives us the analytic tools to adapt the quantitative homogenization program of Armstrong and Smart [7] to estimate the yet larger scale on which solutions on the cluster can be well-approximated by harmonic functions on R d . This is the first quantitative homogenization result in a porous medium and the harmonic approximation allows us to estimate the scale on which a higher-order regularity theory holds. The size of each of these random scales is shown to have at least a stretched exponential moment. As a consequence of this regularity theory, we obtain a Liouville-type result that states that, for each k ∈ N, the vector space of solutions growing at most like o( x k+1 ) as x → ∞ has the same dimension as the set of harmonic polynomials of degree at most k, generalizing a result of Benjamini, Duminil-Copin, Kozma, and Yadin [10] from k ≤ 1 to k ∈ N.