Initial studies of how bacterial toxins modulate the actin cytoskeleton have focused primarily on the mode of action of these toxins. More recently, studies have addressed the molecular interactions of these toxins with host cell signaling pathways and how toxins modulate cellular physiology. Although each individual toxin has a unique mode of action, general themes have started to emerge between bacterial pathogens. During the course of an infection, many pathogenic bacteria produce toxins that target the actin cytoskeleton and its regulatory proteins. Toxins can either act as positive regulators promoting the assembly of filamentous actin structures or, alternatively, as negative regulators promoting actin filament disassembly. Modulation of the actin cytoskeleton facilitates various infectious processes critical for the success of the pathogen. Intracellular bacteria such as Salmonella typhimurium utilize