This work aims to characterize the adsorption process of propranolol HCl, an emerging pollutant and a widely used β-blocker, onto kiwi peels, an agricultural waste. The use of UV-vis spectroscopy was considered to obtain information about the pollutant removal working in the in-batch mode. In a relatively short time, the adsorption process could remove the pollutant from water. A kiwi peel maximum adsorption capacity of 2 mg/g was obtained. With the perspective of scaling up the process, preliminary in-flux measurements were also performed. The investigation of the whole in-batch adsorption process was conducted by studying the effect of ionic strength (adopting salt concentrations from 0 to 0.4 M), pH values (from 2 to 12), adsorbent/pollutant amounts (from 25 to 100 mg and from 7.5 to 15 mg/L, respectively), and temperature values (from 289 to 305 K). The thermodynamics, the adsorption isotherms, and the kinetics of the adsorption process were also carefully investigated. The Langmuir model fitted the experimental data well, with an R2 of 0.9912, restituting KL: 1 L/mg and Q0: 1.8 mg/g. The temperature increase enhanced the pollutant removal due to the endothermic adsorption characteristics. Accordingly, a ΔH°298K of +70 KJ/mol was obtained. The pseudo-first-order kinetic model described the process. Due to the results observed during the study of the effects of pH and ionic strength, the prominent presence of electrostatic interactions, working in synergy with hydrophobic forces and H-bonds between the pollutant and kiwi peel surfaces, was successfully demonstrated. In particular, FTIR-ATR measurements confirmed the latter findings. Finally, desorption experiments for recycling 100% of propranolol for each cycle were performed using 0.1 M MgCl2. Ten cycles of adsorption/desorption were obtained and indicated that the percentage of propranolol removal was not affected during each run, increasing the maximum adsorption from 2 to 20 mg/g.