The purpose of this study was to determine the effects of pH, ion type (salt and metal cations), ionic strength, cation valence, hydrated ionic radius, and solid concentration on the zeta potential of kaolinite and quartz powder in the presence of NaCl, KCl, CaCl 2 , CuCl 2 , BaCl 2 , and AlCl 3 solutions. The kaolinite and quartz powder have no isoelectric point (iep) within the entire pH range (3 \ pH \ 11). In the presence of hydrolysable metal ions, kaolinite and quartz powder have two ieps. As the cationic valence increases, the zeta potential of kaolinite and quartz powder becomes less negative. Monovalent cation, K ? , yields more negative zeta potential values than the divalent cation Ba 2? . As concentration of solid increases, the zeta potential of the minerals becomes more positive under acidic conditions; however, under alkaline conditions as solid concentration increases the zeta potential becomes more negative. Hydrated ionic radius also affects the zeta potential; the larger the ion, the thicker the layer and the more negative zeta potential for both kaolinite and quartz powder.