Dynamic liquid level monitoring and measurement in oil wells is essential in ensuring the safe and efficient operation of oil extraction machinery and formulating rational extraction policies that enhance the productivity of oilfields. This paper presents an intelligent infrasound-based measurement method for oil wells’ dynamic liquid levels; it is designed to address the challenges of conventional measurement methods, including high costs, low precision, low robustness and inadequate real-time performance. Firstly, a novel noise reduction algorithm is introduced to effectively mitigate both periodic and stochastic noise, thereby significantly improving the accuracy of dynamic liquid level detection. Additionally, leveraging the PyQT framework, a software platform for real-time dynamic liquid level monitoring is engineered, capable of generating liquid level profiles, computing the sound velocity and liquid depth and visualizing the monitoring data. To bolster the data storage and analytical capabilities, the system incorporates an around-the-clock unattended monitoring approach, utilizing Internet of Things (IoT) technology to facilitate the transmission of the collected dynamic liquid level data and computed results to the oilfield’s central data repository via LoRa and 4G communication modules. Field trials on dynamic liquid level monitoring and measurement in oil wells demonstrate a measurement range of 600 m to 3000 m, with consistent and reliable results, fulfilling the requirements for oil well dynamic liquid level monitoring and measurement. This innovative system offers a new perspective and methodology for the computation and surveillance of dynamic liquid level depths.