To evaluate aerosol exposure risk and prevention strategies during bystander, pre-hospital, and inpatient cardiopulmonary resuscitation (CPR). This study compared hands-only CPR, CPR with a surgical or N95 mask, and CPR with a non-rebreather mask at 15 L/min. 30:2 compression–ventilation ratio CPR was tested with face-mask ventilation (FMV), FMV with a high efficiency particulate air (HEPA) filter; supraglottic airway (SGA), SGA with a surgical mask, SGA with a HEPA filter, or SGA with both. Continuous CPR was tested with an endotracheal tube (ET), ET with a surgical mask, a HEPA filter, or both. Aerosol concentration at the head, trunk, and feet of the mannequin were measured to evaluate exposure to CPR personnel. Hands-only CPR with a surgical or N95 face mask coverings and ET tube ventilation CPR with filters showed the lowest aerosol exposure among all study groups, including CPR with NRM oxygenation, FMV, and SGA ventilation. NRM had a mask effect and reduced aerosol exposure at the head, trunk, and feet of the mannequin. FMV with filters during 30:2 CPR reduced aerosol exposure at the head and trunk, but increased at the feet of the mannequin. A tightly-sealed SGA when used with a HEPA filter, reduced aerosol exposure by 21.00–63.14% compared with a loose-fitting one. Hands-only CPR with a proper fit surgical or N95 face mask coverings is as safe as ET tube ventilation CPR with filters, compared with CPR with NRM, FMV, and SGA. FMV or tight-sealed SGA ventilation with filters prolonged the duration to achieve estimated infective dose of SARS-CoV-2 2.4–2.5 times longer than hands-on CPR only. However, a loose-fitting SGA is not protective at all to chest compressor or health workers standing at the foot side of the victim, so should be used with caution even when using with HEPA filters.