The aggregation behavior of P3HT is investigated at the interface of orthogonal solvents for P3HT. The changeable characteristics of P3HT aggregate dispersions, for example, extent of aggregation and intrachain order, are studied by varying (1) the interfacial area, (2) the poor solvent used to induce aggregationdichloromethane (DCM), hexane (HEX), and acetonitrile (AcN)and (3) the relative composition of the good solvent, chloroform (CF), and poor solvents. The results are compared to those observed using rapid injection of the solvent. Miscibility gap values (Dd) provide a reasonable justification of the assembly behavior of P3HT in the solvent mixtures in terms of the kinetics of polymer aggregation and the kinetics of solvent mixing at the interface. Atomic force microscopy (AFM) is used to analyze the morphology of films processed from dispersions with disparate characteristics, but having the same solvent composition, for example, 70:30 CF:HEX or 60:40 CF:DCM. Based on the disparity of the kinetics and miscibility gap values, the prevalence of specific structural motifs in the films, for example, spheroids (globules) and fibers, is effectively rationalized in terms of the structural attributes of the aggregates in the liquid phase rather than the evaporation rate (boiling point) differences of the solvents in the mixture.