Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
REPORT DATE (DD-MM-YYYY)
REPORT TYPE
Technical Papers
DATES COVERED
ABSTRACTIn an effort to understand the technical issues related to running multiple Hall effect thrusters in close proximity to each other, testing of a cluster of four Busek BHT-200-X3 devices has begun in Chamber 6 at the Air Force Research Laboratory. Preliminary measurements have shown that the variations in the discharge currents of the four thrusters are synchronized, possibly due to cross talk through the thruster plumes. Measurements of plasma density, electron temperature, and plasma potential in the thruster plumes obtained using a triple Langmuir probe are presented. Anomalously high electron temperatures were recorded along the centerline of each thruster. Collisionless, magnetosonic shock waves induced by the ion-ion two-stream instability are proposed as a possible cause of the high temperatures. The unperturbed ion velocity distribution along the centerline of a Hall thruster is shown to be unstable and a simple geometric model is presented to illustrate the qualitative changes in plasma properties expected across the proposed shock. Estimates using this model show that relatively large changes in electron temperature are consistent with small changes in electron number density across a shock. Qualitative arguments are presented indicating that collisionless shocks are unlikely to form as a result of clustering multiple thrusters.