2003
DOI: 10.1142/s0129167x03001703
|View full text |Cite
|
Sign up to set email alerts
|

The Alexander Polynomial of a Plane Curve Singularity and Integrals With Respect to the Euler Characteristic

Abstract: It was shown that the Alexander polynomial (of several variables) of a (reducible) plane curve singularity coincides with the (generalized) Poincaré polynomial of the multi-indexed filtration defined by the curve on the ring [Formula: see text] of germs of functions of two variables. The initial proof of the result was rather complicated (it used analytical, topological and combinatorial arguments). Here we give a new proof based on the notion of the integral with respect to the Euler characteristic over the p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
59
0
7

Year Published

2007
2007
2018
2018

Publication Types

Select...
6
2
1

Relationship

2
7

Authors

Journals

citations
Cited by 36 publications
(66 citation statements)
references
References 1 publication
0
59
0
7
Order By: Relevance
“…As a consequence of the results of Campillo, Delgado, and GuseinZade (see [5], [6], [7]) and Lemma 4, we have χ(Z(T, O)) = ς f (T ), the zeta function of the monodromy ς f (T ) associated to the germ of function f : (C 2 , 0) → (C, 0). By Remark 9 and Lemma 7, we have…”
Section: And For Any S = S(o) We Havementioning
confidence: 76%
“…As a consequence of the results of Campillo, Delgado, and GuseinZade (see [5], [6], [7]) and Lemma 4, we have χ(Z(T, O)) = ς f (T ), the zeta function of the monodromy ς f (T ) associated to the germ of function f : (C 2 , 0) → (C, 0). By Remark 9 and Lemma 7, we have…”
Section: And For Any S = S(o) We Havementioning
confidence: 76%
“…The proof essentially repeats the arguments from [3], [9]. One uses the representation of the Poincaré series as an integral with respect to the Euler characteristic.…”
Section: Definitionmentioning
confidence: 89%
“…Доказательство по существу повторяет рас-суждения из [3], [8]. Используется представление ряда Пуанкаре в виде инте-грала по отношению к эйлеровой характеристике.…”
Section: теорема 1 имеет место равенствоunclassified
“…Следующее понятие инте-грала по отношению к эйлеровой характеристике по пространству PO V,0 было описано, например, в [3].…”
unclassified