Endurance athlete performance is greatly dependent on sufficient post-race system recovery, as endurance races have substantial physiological, immunological and metabolic effects on these athletes. To date, the effects of numerous recovery modalities have been investigated, however, very limited literature exists pertaining to metabolic recovery of athletes after endurance races without the utilisation of recovery modalities. As such, this investigation is aimed at identifying the metabolic recovery trend of athletes within 48 h after a marathon. Serum samples of 16 athletes collected 24 h before, immediately after, as well as 24 h and 48 h post-marathon were analysed using an untargeted two-dimensional gas chromatography time-of-flight mass spectrometry metabolomics approach. The metabolic profiles of these comparative time-points indicated a metabolic shift from the overall post-marathon perturbed state back to the pre-marathon metabolic state during the recovery period. Statistical analyses of the data identified 61 significantly altered metabolites including amino acids, fatty acids, tricarboxylic acid cycle, carbohydrates and associated intermediates. these intermediates recovered to pre-marathon related concentrations within 24 h post-marathon, except for xylose which only recovered within 48 h. Furthermore, fluctuations in cholesterol and pyrimidine intermediates indicated the activation of alternative recovery mechanisms. Metabolic recovery of the athletes was attained within 48 h post-marathon, most likely due to reduced need for fuel substrate catabolism. this may result in the activation of glycogenesis, uridine-dependent nucleotide synthesis, protein synthesis, and the inactivation of cellular autophagy. These results may be beneficial in identifying more efficient, targeted recovery approaches to improve athletic performance. Endurance races (> 5 km) have become increasingly popular over the last decade and primarily include halfmarathons (21.1 km), marathons (42.2 km), and ultra-marathons (> 42.2 km) 1. Participation in these events requires extensive preparation including physical and mental conditioning as well as meticulously planned dietary strategies. According to Barnett 2 , optimal athletic performance is only achieved when these principles are accompanied by sufficient system recovery following any endurance activity. "Recovery" comprehensively refers to the process in which an altered biological system, such as the metabolome, reverts to its corresponding pre-perturbed state 3. In endurance athletes, metabolic recovery is thought to proceed in a biphasic manner with the initial phase mainly consisting of rapid oxygen, ATP and phosphocreatine replenishment, whereas the second phase entails the slow restoration of innate metabolism adaptations 2,3. A popular research approach for identifying and mapping such metabolic adaptations, quantitatively and qualitatively, is collectively referred to as "metabolomics". Considering that the metabolome provides a direct depiction of the physiological st...