Alzheimer's disease (AD) is the most common cause of dementia. Amyloid plaques and neurofibrillary tangles are prominent pathological features of AD. Aging and age-dependent oxidative stress are the major nongenetic risk factors for AD. The beta-amyloid peptide (Aβ), the major component of plaques, and advanced glycation end products (AGEs) are key activators of plaque-associated cellular dysfunction. Aβ and AGEs bind to the receptor for AGEs (RAGE), which transmits the signal from RAGE via redox-sensitive pathways to nuclear factor kappa-B (NF-κB). RAGE-mediated signaling is an important contributor to neurodegeneration in AD. We will summarize the current knowledge and ongoing studies on RAGE function in AD. We will also present evidence for a novel pathway induced by RAGE in AD, which leads to the expression of thioredoxin interacting protein (TXNIP), providing further evidence that pharmacological inhibition of RAGE will promote neuroprotection by blocking neurovascular dysfunction in AD.