DR2B and DR2C extracts, from peel of commercially and physiologically ripe eggplants, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions into the host cells. The antioxidative cytoprotective effects against tBOOH-induced damage was assessed in Caco2 cells, while the antiviral activity was studied in Vero cells; phenolic and anthocyanin fingerprint was characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. DR2C resulted able to partly counteract the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia. DR2B and DR2C reduced ROS production, possessed scavenging and chelating properties. Interestingly, DR2C increased intracellular GSH levels. Furthermore, DR2Cinhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.