Breast cancer continuously poses serious clinical challenges to human health due to its intrinsic heterogenicity and evolving drug resistance. Recently, increasing evidence has shown that pyroptosis, known as a programmed and inflammatory form of cell death, participates in tumorigenesis, progression, and remodeling of the tumor immune microenvironment (TIME). However, a comprehensive insight into pyroptosis-related signatures for breast cancer remains elusive. The current study established a pyroptosis-related lncRNA signature using transcriptome data and corresponding clinical information from The Cancer Genome Atlas (TCGA). Pyroptosis-related gene clusters, the associated differential expression in breast cancer patients’ subtypes, and the potential mechanisms were all discussed. This integrative analysis revealed a unique signature underpinning the dichotomy of breast cancer progression and survival outcomes. Interestingly, the pyroptosis-related lncRNA signature was revealed as closely intertwined with the TIME. A correlation was established between the pyroptosis-related LncRNA signature and the TIME, underlying the mutual effect between pyroptosis and the immune responses implicated in breast cancer. The findings in this work underline the critical role exerted by pyroptosis in breast cancer, providing new insights into disease progression, prognosis, and therapeutic potential. This work has been poised to provide new avenues for personalized, immune-based cancer therapeutics by enhancing our understanding of pyroptosis in breast cancer.