The mechanisms underlying the cellular response to extracellular matrices (ECM), consisting of multiple adhesive ligands, are still poorly understood. Here we address this topic by monitoring the differential cellular response to two different extracellular adhesion molecules – fibronectin, a major integrin ligand, and galectin-8, a lectin, that binds β-galactoside residues, as well as to mixtures of the two proteins. Cell spreading on galectin-8 coated substrates results in a larger projected cell area, a more extensive extension of filopodia, yet an inability to form focal adhesions and stress fibers, compared to cell spreading on fibronectin. These differences can be partially reversed by experimental manipulations of small G-proteins of the Rho family and their downstream targets, such as formins, Arp2/3 complex, and Rho kinase. We also show that the physical adhesion of cells to galectin-8 is stronger than the adhesion to fibronectin. Notably, galectin-8 and fibronectin differentially regulate cell spreading and focal adhesion formation, yet they act synergistically to upregulate the number and length of filopodia. The physiological significance of the coherent cellular response to a molecularly complex matrix is discussed.